Arg-K-Min reduction

Using the pykeops.numpy API, we define a dataset of N points in RD and compute for each point the indices of its K nearest neighbours (including itself).

Setup

Standard imports:

import time

import matplotlib.pyplot as plt
import numpy as np

from pykeops.numpy import Genred

Define our dataset:

N = 100000  # Number of points
D = 2  # Dimension of the ambient space
K = 3  # Number of neighbors to look for

dtype = "float32"  # May be 'float32' or 'float64'

x = np.random.rand(N, D).astype(dtype)

KeOps Kernel

formula = "SqDist(x,y)"  # Use a simple Euclidean (squared) norm
variables = [
    "x = Vi(" + str(D) + ")",  # First arg : i-variable, of size D
    "y = Vj(" + str(D) + ")",
]  # Second arg: j-variable, of size D

# N.B.: The number K is specified as an optional argument `opt_arg`
my_routine = Genred(formula, variables, reduction_op="ArgKMin", axis=1, opt_arg=K)

Using our new pykeops.numpy.Genred routine, we perform a K-nearest neighbor search ( reduction_op = "ArgKMin" ) over the j variable yj ( axis = 1):

Note

If CUDA is available and backend is "auto" or not specified, KeOps will:

  1. Load the data on the GPU

  2. Perform the computation on the device

  3. Unload the result back to the CPU

as it is assumed to be most efficient for large-scale problems. By specifying backend = "CPU" in the call to my_routine, you can bypass this procedure and use a simple C++ for loop instead.

# Dummy first call to warm-up the GPU and thus get an accurate timing:
my_routine(np.random.rand(10, D).astype(dtype), np.random.rand(10, D).astype(dtype))

# Actually perform our K-nn search:
start = time.time()
ind = my_routine(x, x, backend="auto")
print("Time to perform the K-nn search: ", round(time.time() - start, 5), "s")

# The result is now an (N,K) array of integers:
print("Output values :")
print(ind)

plt.figure(figsize=(8, 8))
plt.scatter(x[:, 0], x[:, 1], s=25 * 500 / len(x))

for k in range(K):  # Highlight some points and their nearest neighbors
    plt.scatter(x[ind[:4, k], 0], x[ind[:4, k], 1], s=100)


plt.axis("equal")
plt.axis([0, 1, 0, 1])
plt.tight_layout()
plt.show()
plot test ArgKMin
Time to perform the K-nn search:  0.01019 s
Output values :
[[    0 98057 69506]
 [    1 76764 41642]
 [    2 86083 52230]
 ...
 [99997 18619 17508]
 [99998 12190 90468]
 [99999 35712 79082]]
Ignoring fixed x limits to fulfill fixed data aspect with adjustable data limits.

Total running time of the script: (0 minutes 0.201 seconds)

Gallery generated by Sphinx-Gallery